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DNA is the principal carrier of biological information. It is present in nearly all forms of life and 

it enables the transfer of genetic information between many generations. Beyond its natural role, 

DNA is also a programmable material for nanoscale engineering. In this work, we harnessed the 

modularity and programmability of synthetic DNA to build information processing and storage 

applications. In Chapter 1 and 2, we developed two approaches to build DNA-based molecular 

classifiers to interact with native RNA samples and perform rapid gene expression diagnostics. 

In Chapter 3, we explored DNA as a storage medium for digital information. Specifically, we 

explore how synthetic DNA can be manipulated to form long concatemers to facilitate nanopore 

sequencing readout, enabling a faster and real-time read-head for DNA storage. Altogether, this 

body of work demonstrates how DNA nanotechnology is a powerful tool to manipulate 

information at a nanoscale and it can enable the development of new applications spanning 

multiple scientific disciplines.  
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Introduction 
 
Technologies associated with synthesis and sequencing of DNA have played a central role in 
advancing biological sciences over the past few decades. Specifically, automated DNA synthesis, 
available since the 1970s, along with molecular cloning techniques enabled modifying, copying 
and introducing new genetic sequences to reveal the workings of biology. In parallel, DNA 
started gaining interested beyond its role in biology but as a biopolymer with very useful 
characteristics. In 1981, Nadrian Seeman, considered the father of DNA nanotechnology, first 
proposed the construction of three-dimensional networks of synthetic nucleic acids1. In 1994, 
Leonard Adleman first demonstrated the use of DNA as a form of computation to solve the 
seven-point Hamiltonian path problem2. Since then, multiple new scientific fields have emerged 
that leverage DNA as a building block for manipulating information, interacting with biology 
and building complex molecular structures3. 
 
DNA is an exceptional material for molecular engineering. The predictability of nucleic acid 
base pairing and the large sequence space associated with it enables engineers to simulate and 
create scalable molecular systems. Arbitrary DNA strands can be evaluated in silico to derive 
secondary structure predictions that very closely approximate their actual behavior in vitro. The 
scalability of this engineering approach enabled researchers to build three-dimensional DNA 
nanostructures with outstanding precision4, to assemble DNA circuits with tens of interconnected 
components5, 6 and to create entirely synthetic genomes with millions of nucleic bases7. As the 
cost of synthesis and sequencing continues to drop, DNA engineering continues to expand into 
larger scales and new applications.  
 
Using DNA to build computational modules that sense DNA inputs, process information and 
trigger an output signal has been a common theme in DNA nanotechnology. Specifically, DNA 
strand displacement has provided a design architecture for the construction of arbitrary 
computing modules. Despite an extensive body of work, this technology remains largely an 
academic pursuit with limited real-world applications. One natural substrate for the application 
of DNA computing is the analysis of biological samples which are made up of thousands of 
DNA and RNA sequences. One example of this application is the work by David Zhang et. al 
where DNA nanotechnology principles were harnessed to build dramatically better sensors for 
single-nucleotide polymorphisms8, 9.  
 
Gene expression analysis of RNA molecules is another promising real-world application for 
DNA nanotechnology.  The relative quantities of thousands of RNA molecules in biological 
samples are commonly measured to understand cellular state. With the exception of translational 
variations and post translational modifications, biological changes are generally reflected in the 
upregulation or downregulation of a subset of genes. Capturing the state of RNA gene expression 
results in a snapshot of these biological changes. Building DNA-based computational systems to 
probe gene expression states have been a subject of interest in the field for many years10, 11. As 
gene expression profiling becomes more promising as a diagnostics tool, the need for better tools 
to measure gene expression changes has increased over time.   
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The goal of building a molecular classifier for gene expression profiling is to reduce the 
dimensionality of the readout to one or a few outputs. Without molecular computing, every RNA 
transcript level must be independently measured and then used as inputs for in-silico 
classification. In practice, this approach results in the development of diagnostics assay that 
require physical parallelization of tens or hundreds of measurements corresponding to each RNA 
transcript (e.g. quantitative PCR, microarrays or next-generation sequencing). Instead, a 
molecular classifier could in principle sense and process gene expression levels at the molecular 
level and report the output of the classification task. The result would be a simpler and more 
inexpensive implementation of gene expression profiling with applications in human health and 
beyond.  
 
In Chapter 1 and Chapter 2, we explore two different approaches for the development of a 
molecular classifier for gene expression diagnostics. In Chapter 1, we implemented a design 
architecture where in-silico support vector machines (SVMs) can be accurately translated into a 
DNA implementation where hybridization and strand displacement carry out the classification 
task. In Chapter 2, we combined amplification and classification for gene expression profiling of 
RNA samples at low concentrations. In both cases, we started with a classification problem in-
silico followed by compiling of DNA probes to solve a given classification task.  
 
Another emerging application for DNA nanotechnology is the use of synthetic DNA to store 
digital information. Using DNA as a storage medium conveys multiple advantages over existing 
alternatives: it offers ultrahigh information density (hundreds of petabytes per gram), it can retain 
information for millions of years and writing and reading DNA will be relevant for the 
foreseeable future. In 2012, George Church et. al. demonstrated an important milestone by 
writing and reading 5.27 megabits using 54,898 oligonucleotides. Since then, DNA storage has 
gained steam and multiple groups have demonstrated increasing capabilities in terms of capacity, 
throughput and scalability12-17. In Chapter 3, we explored how nanopore sequencing is a 
promising sequencing platform to build a real-time read-head for DNA storage. In collaboration 
with the Molecular Information Systems Lab (MISL) at the University of Washington, we 
developed a strategy to maximize the throughput of nanopore sequencing for DNA storage using 
DNA assembly of short oligonucleotides.  
 
Through this body work, I hope to demonstrate how synthetic DNA is a powerful and versatile 
engineering material with immense opportunities in information processing and storage. As the 
cost associated with synthesizing and reading DNA continues to drop, we are currently 
scratching the surface of possibilities in DNA nanotechnology. It is my hope that this work will 
be a useful resource for those who will continue developing DNA nanotechnology and will 
inspire development of more real-world applications in this field. 
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A molecular multi-gene classifier for disease diagnostics 
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Chapter 1: A molecular multi-gene classifier for disease diagnostics 
 
Abstract 
 
Despite its early promise as a diagnostic and prognostic tool, gene expression profiling remains 
cost-prohibitive and challenging to implement in a clinical setting. Here, we introduce a molecular 
computation strategy for analyzing the information contained in complex gene expression 
signatures without the need for costly instrumentation. Our workflow begins by training a 
computational classifier on labeled gene expression data. This in silico classifier is then realized 
at the molecular level to enable expression analysis and classification of previously 
uncharacterized samples. Classification occurs through a series of molecular interactions between 
RNA inputs and engineered DNA probes designed to differentially weigh each input according to 
its importance. We validate our technology with two applications: a classifier for early cancer 
diagnostics and a classifier for differentiating viral and bacterial respiratory infections based on 
host gene expression. Together, our results demonstrate a general and modular framework for low-
cost gene expression analysis.   
 
Introduction 
 
Gene expression changes are associated with every human disease. Monitoring such changes 
enables clinicians to perform diagnosis, evaluate therapeutic efficacy and predict disease 
recurrence19-24. Existing methods for high-throughput RNA detection such as RT-qPCR, 
microarrays or RNA sequencing can in principle be used to quantitatively monitor gene expression 
changes in diagnostic applications but remain cost-prohibitive in situations where recurrent 
monitoring or regular screenings are necessary21, 25-27. Moreover, the experimental complexity and 
the need for in silico computational analysis of the resulting data mean that such tests can only be 
performed in specialized laboratory settings. To overcome these limitations of complexity and cost 
it is necessary to develop instrument-free diagnostic tests that can be administered and interpreted 
directly at the point of care28.  
 
In the past two decades, researchers have found that peripheral gene expression (e.g. whole blood, 
platelets, exosomes, plasma or saliva) is consistently altered between cancer patients and healthy 
controls23, 29-33. For instance, relative quantitation of telomerase reverse transcriptase (hTERT) 
RNA in blood or serum has diagnostic and prognostic value in many different cancer types31, 34-38. 
Similarly, researchers have demonstrated that a classifier based on a patient's blood RNA profile 
can distinguish between bacterial and viral infections28, 39. Discriminating between these two 
groups is essential to address inappropriate prescription of antibiotics and combat antibiotic 
resistance. Importantly, early cancer diagnostics and combating antimicrobial resistance are just 
two examples of medical applications that would benefit from rapid and inexpensive gene 
expression diagnostics for use at home or the point of care. 
 
Recent work in cell-free synthetic biology and DNA nanotechnology has demonstrated progress 
towards the goal of creating low-cost RNA diagnostics8, 40-43. For example, Collins and 
collaborators developed a test for Zika virus by embedding a set of engineered molecular 
components for RNA sensing and signal amplification in a paper matrix41. Detection of the RNA 
marker is converted into a colorimetric signal that allows intuitive interpretation. However, to 
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broaden the utility of such tests beyond applications where detection of a single marker is 
sufficient, it will be necessary to develop “molecular computation” technologies that can convert 
information encoded in multi-gene expression signatures into interpretable Yes/No answers.  
 
Cell-free molecular circuits with dozens of interconnected components have been experimentally 
demonstrated and provide proof-of-principle that complex computation can be embedded in 
molecular substrates 5, 6, 11, 44-47. But rationally designed molecular circuits realized so far are not 
well-matched to diagnostic applications. For instance, it is often assumed that inputs take Boolean 
values (i.e. high or low)5, 6, 44, 45, 48, an assumption that is not naturally compatible with RNA inputs 
derived from a biological sample. In contrast, computational gene expression classifiers are 
commonly built using logistic regression, SVMs or neural network approaches that take better 
advantage of the information encoded in the actual levels of the biomolecules of interest49-51. 
Finally, inputs are typically short, unstructured oligonucleotides with carefully designed sequences 
rather than long biological RNAs with extensive secondary structure. To realize the potential of 
DNA computation for diagnostic applications it is thus necessary to develop molecular classifiers 
that operate directly on RNA inputs and produce a result rapidly and robustly11. 
 
Here, we address this challenge and demonstrate a framework for creating a DNA-based molecular 
“computer” capable of performing multi-gene classification (Fig. 1a).  In our workflow, publicly 
available, labeled (e.g. bacterial infection vs. viral infection) gene expression data is first used to 
train an in silico linear classifier, specifically a support vector machine (SVM). During training, 
constraints are imposed to find the minimal set of genes that need to be considered for classification 
with a desired accuracy. The resulting model consist of a set of input features (i.e. the RNA 
transcripts), a positive or negative weight associated with each feature, and a set of mathematical 
operations (i.e. summation and comparison to a threshold) performed over these inputs. Once an 
optimal model has been obtained, a computational tool translates all parameters and mathematical 
functions into a novel class of DNA probes that realize the classifier at the molecular level. Below, 
we first test each molecular classifier component individually, starting with RNA detection and 
assignment of weights. Finally, we validate the entire workflow by implementing molecular 
classifiers for the two applications introduced above, namely early cancer diagnostics based on 
ratiometric detection of hTERT and distinguishing between bacterial and viral infections based on 
a panel of host genes. 
 
Results 
 
Detection of RNA transcripts using DNA strand displacement 
 
Initially, we implemented a room temperature strand displacement cascade to detect RNA 
transcripts in solution. Specifically, we designed a two-stage cascade whereby an input sequence 
within the target RNA transcript (domain a) binds to a complementary probe via a toehold-
exchange mechanism. As a result of this initial reaction the longer probe strand becomes attached 
to the transcript and a toehold (domain t1*) is exposed within that strand. In the subsequent strand 
displacement reaction, domains t1* x* in the bound probe strand interact with a universal 
fluorescent reporter resulting in an increase in fluorescent signal. Importantly, because of the two-
stage design, the target sequence on the transcript is completely independent of the reporter 
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sequence. Different regions on a transcript can thus be targeted by changing the hybridization 
probe sequence but using the same fluorescent reporter. 
 
Next, we considered how to select a specific target domain for probe binding within the much 
longer RNA transcript. In previous applications, single-stranded nucleic acids acting as inputs to 
DNA strand displacement cascades had generally been designed to have minimal secondary 
structure, because even limited structure in the toehold domain can reduce the reaction rate by 
orders of magnitude. In contrast, in our application the input sequence is constrained by a high 
degree of secondary structure which decreases the thermodynamic gain of completing 
displacement. In an initial attempt to minimize the impact of secondary structure we used Soligo, 
a software for rational design of antisense probes, to identify accessible target sites. For a first test, 
we used the sequence of a transcript coding for the fusion protein H2B-citrine. We designed a total 
of nine probe sequences, four of which (positions 204, 988, 1033 and 1078 counting from the 
beginning of the 5’UTR) were predicted to have low secondary structure and high target 
accessibility (DDG0 < -12) to Soligo.  To experimentally test our predictions and probe design, we 
synthesized the H2B-citrine RNA transcript using in-vitro transcription. We then combined this 
transcript with pre-assembled probe and reporter and followed the reaction at room temperature 
by monitoring changes in the fluorescence signal. Strand displacement probes and RNA transcripts 
were added at 50 nM and 30 nM respectively in the final mixture and in each experiment, a single 
probe was tested. We observed significant triggering in five out nine regions, including those that 
had better predicted target accessibility based on Soligo predictions.  
 
Although these results demonstrate that the probe mechanism works as designed and that targeting 
regions with low structure is a promising strategy, there are downsides to this approach. 
Additionally, the number of probes that can be used to target a single transcript is limited and 
largely determined by the secondary structure of the transcript. Moreover, even if the target sited 
is accessible, reaction kinetics can vary between different sites and reaction rates can become 
limiting at low transcript concentrations.  
 
Detection of transcripts through assisted hybridization 
 
The first step in our implementation of a molecular classifier is the detection of RNA transcripts 
(Fig. 1b). Initially, we pursued an approach using competitive hybridization (or “strand 
displacement”) probes at room temperature (Supplementary Text 2, Supplementary Fig. 1). 
However, we found that the high degree of secondary structure in RNA transcripts severely limited 
probe binding efficiency. The use of computational tools for identifying unstructured stretches of 
RNA ameliorated the situation somewhat, but binding kinetics still varied widely (Supplementary 
Fig. 2). Moreover, the number of potential probe binding sites on a transcript was determined 
entirely by the secondary structure and could not be tuned at will which is incompatible with our 
molecular computation scheme, as detailed below.  
 
To enable robust detection of a larger number of target regions within a transcript, we developed 
an assisted hybridization protocol. Specifically, we designed a two-stage reaction whereby an input 
sequence within the target RNA transcript (domain a) is thermally or chemically annealed to a 
hybridization probe consisting of two partially complementary strands (Fig. 1c). Additional helper 
strands (60 nt.) are included in the reaction; helper strands hybridize adjacent to the targeted region 
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on the RNA to further help unfold its secondary structure and to prevent binding between the 
adjacent RNA regions and the single stranded domain of the hybridization probe. As a result of 
this initial reaction the longer probe strand becomes attached to the transcript and a short toehold 
(domain t1*) is exposed within that strand. Domain a* in the hybridization probe is partially double 
stranded (15 nt. single stranded and 15 nt. double stranded) and is complementary to the target 
sequence. Upon binding to its target, hybridization results in a maximum overall gain of 9 base 
pairs making this reaction thermodynamically favorable. Subsequently, a fluorescent reporter is 
added to the solution and reacts with the bound strand through toehold-mediated strand 
displacement, resulting in an increase in fluorescence. If the target RNA is not present, the 
translator probe reforms upon annealing and cannot interact with the fluorescent reporter. 
Importantly, because of the two-stage design, the target sequence on the transcript is completely 
independent of the reporter sequence.  
 
To experimentally test this strategy, we designed hybridization probes to target three different 
regions of an mRNA coding for the fusion protein histone 2B Citrine (Citrine) as well as a control 
hybridization probe specific to GAPDH. For an initial test of the probe design with an unstructured 
target, a short oligonucleotide encoding the target sequence (30nM) was added to each probe at 
room temperature. As designed, addition of the target oligonucleotide resulted in increased signal 
from a downstream fluorescent reporter (Fig. 1d). In contrast, addition of in vitro transcribed 
Citrine RNA (30 nM) did not result in increased fluorescence, because the secondary structure of 
the RNA transcript hindered the strand displacement reaction. We then tested whether addition of 
the helper strands could aid hybridization between the RNA target and probe at room temperature, 
but we observed significant triggering for only one hybridization probe (Supplementary Fig. 3).  
 
Subsequently, we implemented a thermal annealing strategy where the hybridization probe and 
corresponding helper strands were annealed with the Citrine RNA transcript before addition of the 
fluorescent reporter. Thermal annealing was performed by heating reactants to 70°C for 10 seconds 
and subsequently cooling down to 25°C at a rate of -1°C per 10 seconds. As expected, we observed 
a fluorescent response equivalent to the concentration of added transcript in all Citrine probes 
while the GAPDH probe showed no increased in fluorescence (Fig. 1e). We carried out the same 
reaction without addition of helper strands and we observed a lower fluorescence response across 
all conditions. These results suggest that the helper strands have a role in suppressing non-specific 
binding between single-stranded overhangs in the probe and single-stranded domains in the RNA 
target. We also observed very little increase in fluorescence in the case where no transcript was 
added. Moreover, we performed thermal annealing experiments in a background of cellular mRNA 
extracted from HEK-293 cells without observing any unspecific triggering. (Supplementary Fig. 
4). 
 
Since thermal annealing is not ideal for point-of-care diagnostic applications, we also implemented 
a chemical denaturing strategy for unfolding RNA targets. Following work by Shelton et. al., we 
evaluated the use of Urea and subsequent addition of MgCl2+ as a method to denature and renature 
nucleic acid base pairing52. We implemented this chemical annealing strategy by incubating a 
hybridization probe, helper strands and corresponding target in 6.4M urea for 15 minutes followed 
by incubation with Mg2+ for 15 minutes. We observed target-specific increase in fluorescence 
equivalent to thermal annealing conditions when adding the Citrine RNA transcript or a target 
oligonucleotide (Fig. 1f).  
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We note that this assisted hybridization strategy is quite distinct from earlier work in dynamic 
DNA nanotechnology that generally aimed to create fully autonomous systems that require 
minimal intervention from an experimentalist. However, we found that separating the detection 
reaction into an annealing step followed by a more conventional strand displacement-based 
reporter reaction improved not only the robustness of input detection but also dramatically 
accelerated it. Both features are crucial for designing a practical diagnostic test. 
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Figure 1 | A universal framework for rapid prototyping of molecular classifiers for gene expression diagnostics. a, An in-silico 
classifier is trained and validated on publicly available gene expression data. The weights and other characteristics of the in silico classifier 
are then translated into DNA complexes that realize the classifier at the molecular level. Finally, the molecular classifier is tested with 
RNA targets and a diagnosis is obtained. b, As a first step towards creating a molecular gene expression classifier, we developed a 
systematic approach for detecting specific RNA transcripts with DNA strand displacement cascades c, The molecular mechanism for 
coupling DNA-based circuits with endogenous RNA transcripts consists of two reaction steps. First, a hybridization probe and helper 
strands are hybridized to the target site using chemical or thermal annealing. Subsequently, a fluorescent reporter is added to the reaction 
and binds to the product of the assisted hybridization reaction via strand displacement. d, We tested the RNA detection reaction by 
designing 3 hybridization probes targeting different regions in Citrine and a probe targeting a region in GAPDH. At room temperature, 
the addition of Citrine transcript (30 nM) resulted in no significant triggering in all probes. As a positive control, we added a target 
oligonucleotide (30 nM) for each probe that resulted in the expected fluorescence response. e, Experimental results corresponding to the 
thermal annealing protocol where each probe was annealed with Citrine RNA and corresponding helper strands before addition of the 
fluorescent reporter. All Citrine probes were triggered by the Citrine RNA while the GAPDH probe resulted in no fluorescence response. 
Without inclusion of the helper strands, Citrine probes resulted in a diminished fluorescence response. f, Experimental results 
corresponding to the chemical annealing protocol where each probe was incubated with Citrine RNA and corresponding helper strands in 
Urea and subsequently in MgCl2. We observed the expected fluorescence response with addition of an oligonucleotide target or Citrine 
transcript.  
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Molecular implementation of weights  
 
In a gene expression classifier, RNA transcripts have varying levels of influence on the classifier 
outcome. In silico, every transcript is assigned a numerical weight capturing its importance (Fig. 
2a). At the molecular level, we implemented these weights by designing multiple hybridization 
probes that target different regions within each RNA. For example, weights n=1, 2, N are realized 
by having 1, 2 or N distinct probes targeting the same transcript (Fig. 2b). Even though the targeted 
sequences on the transcript are different, each probe contains an identical output strand (domains 
t1*x* in Fig. 1c) which then triggers a fluorescent reporter. Every additional hybridization probe 
results in a proportional increase in the steady state fluorescence signal. The fluorescence due to 
mRNA1 should thus be proportional to the product w1*[mRNA1] where w1 is an integer weight 
and [mRNA1] is the concentration of mRNA1.  
 
We implemented this set-up experimentally by designing reactions with 1, 2, 3 or 4 probes 
targeting contiguous regions on the Citrine transcript. To avoid saturation of the reporter complex, 
we operated the system in a regime where reporter and hybridization probes far exceeded the 
transcript concentration. We measured the fluorescence signal corresponding to the reporter 
complex before and after addition of the hybridized probe-RNA complexes until a steady state was 
reached (Fig. 2c). As expected, we found that the steady state signal was linearly proportional to 
the number of hybridization probes bound to the RNA transcript for all RNA concentrations tested, 
demonstrating that this mechanism can be used to assign an integer-valued weight to an RNA 
transcript (Fig. 2d). 
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Summation and thresholding 
 
Building a complete linear classifier requires mechanism for summing up weights and comparing 
the sum to a threshold value to obtain the desired yes/no answer (Fig. 3a)11, 53. If there are multiple 
transcripts with different weights of the same sign, we can compute the sum of their contributions 
simply by using the same output sequence across all probes. The total concentration of output 
strands and thus the final fluorescence signal is then proportional to the sum w1*[mRNA1]+…+ 
wN*[mRNAN]. Weights with negative values can be implemented using a distinct output sequence 
for the negative probes. The sums of negative and positive weights in a classifier are then 
represented by the total concentrations of two distinct output strands. 
 
To complete the summation, the individual sums of positive and negative weights – represented 
by (positive) concentrations of two distinct nucleic acids sequences –  need to be subtracted from 
one another. Intuitively, such a subtraction can be realized as a chemical reaction whereby 
stoichiometric amounts of positive and negative output strands annihilate each other until only the 
majority species is left. The concentration of that species then is the final result of the summation 
over all weights. To implement such a stoichiometric annihilation reaction between two nucleic 
acid species of unrelated sequence, we take advantage of the cooperative hybridization mechanism 
("annihilator" gate) introduced by Zhang53, 54. The final step in the molecular computation pipeline 
is to compare the result of the summation to a threshold value. In the simplest case, the threshold 

Figure 2 | Implementation of classifier weights by targeting of multiple adjacent regions in a transcript. a, Each transcript is 
assigned a weight reflecting its influence in the classifier decision. b,  Each transcript is targeted with a number of probes equivalent 
to its classifier weight. By targeting probes to neighboring regions, only a single pair of flanking helper strands is necessary for each 
transcript hybridization event. c, Probe binding was characterized through fluorescence kinetics experiments. Initial fluorescence 
values correspond to quenched reporter in solution. After 10 minutes, annealed probe-transcript complexes are added to the solution 
resulting in an increase in fluorescence proportional to the number of hybridization probes (1, 2, 3 or 4). Reactions were carried out 
with 50 nM of reporter, 40 nM of combined hybridization probe and different concentrations of Citrine transcript d, Steady state 
fluorescence response corresponding to 1, 2, 3 or 4 hybridization probes targeting the H2B-Citrine RNA transcript. As expected, 
we observed a linear relationship between the number of hybridization probes and the fluorescence response across a range of Citrine 
RNA concentrations.  
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value is set to zero and the class a specific input sample belongs to is determined simply by the 
sign of the final sum. Non-zero threshold values can be realized by spiking the corresponding 
amount of negative or positive output strand into the reaction which biases the sum by a controlled 
amount.  
 
Molecular thresholding of RNA transcripts 
 
To experimentally test whether an “off-the-shelf” thresholding (or subtraction) element could be 
used in conjunction with our RNA detection scheme we created a DNA circuit consisting of three 
modules: a translator gate that connects the output strand from the assisted hybridization reaction 
to the threshold element, an “annihilator gate” and single-stranded reference oligonucleotide that 
together act as the threshold element and a catalytic reporter that amplifies any signal exceeding 
the threshold value to a constant level allowing for a Yes/No answer (Supplementary Fig. 5).  
 
We tested this molecular thresholding system on three different transcripts (hTERT, EGFR, 
GAPDH) commonly used as biomarkers or reference genes for diagnostic purposes. To 
accommodate different RNAs only the hybridization probe and helper strands needed to be 
switched while all the other strand displacement components are retained, demonstrating 
modularity of the design. Each mRNA was individually transcribed in vitro from a cDNA template 
and quantified. For each transcript, we evaluated four experimental conditions using thermal 
annealing with varying ratios of transcript to reference oligonucleotide. Steady state fluorescence 
values were acquired two hours after addition of a catalytic amplifier and fluorescent reporter.  
With all three transcripts, we only observed an increase in fluorescence when the amount of 
transcript exceeded the amount of threshold. 
 
A two-gene diagnostic classifier 
 
For an experimental test of a full two-input classifier circuit, we selected hTERT, a cancer 
biomarker, as the target (associated with a positive weight) and GAPDH, a common internal 
reference gene in RT-PCR experiments as the reference RNA (associated with a negative weight) 
(Fig. 3b). Relative quantitation of HTERT to GAPDH in human plasma has been suggested as an 
early diagnostic and prognostic biomarker in human cancer31, 34-38, 55, 56. The thresholding 
(subtraction) and amplification reaction are performed exactly as above but instead of an external 
reference strand to set the threshold value, there now is an internal reference RNA associated with 
a negative weight that effectively sets a threshold (Supplementary Fig. 6).  
 
We evaluated four classifiers with an hTERT weight of +1 and GAPDH weights of -1, -2, -3 and 
-4 (Fig. 3c). A sample containing both RNA transcripts was first combined with corresponding 
hybridization probes and helper strands. hTERT transcript was present at 15 nM while GAPDH 
transcript was titrated from 0 nM to 14 nM with all DNA circuits components added at higher, 
non-limiting concentrations. We further characterized a classifier response with an hTERT weight 
of +1 and GAPDH weight of -2 with a range of concentrations of each transcript (0nM to 20nM) 
(Fig. 3d,e). Overall, we evaluated 64 different experimental conditions where we recorded 
fluorescence levels for 2 hours after addition of strand displacement components. We only 
observed a significant increase in fluorescence in conditions when the amount of hTERT transcript 
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was above the threshold set by the product of the GAPDH transcript concentration and weight, in 
agreement with the classifier design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Training a multi-gene support vector machine 
 
We next sought to scale up our molecular classifier framework. Discriminating between viral and 
bacterial infections using molecular gene expression classification is a promising application since 
it requires a rapid, cost-effective and self-contained process to be implemented in a clinical setting. 
In 2016, Tsalik et. al. developed a peripheral whole blood gene expression classifier with 130 
genes to differentiate between bacterial infections, viral infections, non-infectious illness and 
healthy controls with 87% accuracy28.  
 
To build a molecular classifier, we first simplified the classification problem by distinguishing 
only between viral and bacterial infections. We used the publically available gene expression data 
corresponding to 115 viral infections and 70 bacterial infections for classifier training28. For each 
patient, gene expression values for 14,500 human genes were measured. We implemented a 
support vector machine (SVM) to determine the minimal set of genes and corresponding weights 
for this classification problem. This process involved iterating through multiple sets of features 

Figure 3 | Molecular implementation of a two-gene classifier for cancer diagnostics a, A sum and activation function are used 
to aggregate weighted gene expression information into a single, interpretable output. Upon transcript detection and scaling, a sum 
function calculates the resulting net input. If the net input is higher than a threshold, an activation function produces a catalytic 
response. b, Graphical representation of the hTERT/GAPDH molecular classifier with variable negative weights for GAPDH and 
a weight of +1 for hTERT. c, Final state fluorescence measurements after 2 hours corresponding to four classifiers with varying 
GAPDH weights. Grey line indicates ideal thresholding boundary. Reactions were carried out with 50 nM of reporter, 100 nM of 
helper strands and 30 nM of catalytic amplifier, annihilator, translators and hybridization probes. d, 2-hour fluorescence 
measurements after addition of strand displacement components corresponding to a +1 hTERT / -2 GAPDH molecular classifier. 
e, End point fluorescence measurements after 2 hours corresponding to a +1 hTERT / -2 GAPDH molecular classifier. 
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(genes) and associated weights until converging to a solution that resulted in the best classification 
outcome.  
 
We trained an SVM algorithm with the following constraints: First we required a low number of 
genes (<10) to allow for the classifier to be implemented at the molecular level. Second, we 
constrained weights to integer values between -5 to +5. This choice was made to limit the number 
of probes for a single gene as well as the overall size of the classifier. Third, we made the 
misclassification penalty for bacterial samples 3 times higher than that for viral samples. This 
choice was made because the worst possible outcome is to incorrectly diagnose a bacterial 
infection as viral, delaying the use of antibiotics. Even though this classification model performed 
well in the validation set, it is important to note that a model with a higher number of features may 
be more robust when encountering gene expression variability absent in the training dataset. We 
selected 9 classifiers with at least 80% accuracy in the training set and validated them using a 
different gene expression data set39. We selected the classification model with the highest 
performance in the validation set to build a molecular classifier (Fig. 4a). The selected classifier 
correctly labelled 94% and 80% of bacterial and viral samples in the training set and 89% of 
bacterial and 90% of viral samples in the validation set (Fig. 4b,c).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A molecular implementation of the bacterial vs viral classifier 
 
Next, we designed a molecular implementation of the bacterial vs. viral classifier. First, we 
selected regions in each transcript that consisted of individual exons that were at least 200 base-
pairs long such that they could fit multiple hybridization probes. Due to the large number of 
transcripts and associated probes, we implemented a probe design tool for systematically 
generating the necessary DNA components for molecular classification. Each transcript was 
assigned a number of hybridization probes and helper strands, based on the weights learned in 
silico. Positive and negative transcripts were assigned hybridization probes with different output 

Figure 4 | In silico training of a minimal linear classifier to discriminate viral from bacterial infections based on host gene 
expression data. a, ROC curves illustrate the diagnostic ability of a binary classifier system as the threshold is varied. ROC curves 
correspond to the classification performance in the validation set from 10 classification models selected from the training phase. We 
used the classification model with the highest AUC in the validation dataset to build a molecular classifier. b, Performance of the 
selected classifier in the validation set where 89% and 90% of bacterial and viral samples were labeled correctly. c, Performance of 
the selected classifier in the training set where 94% and 80% of bacterial and viral samples were labeled correctly.  
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domains such that the concentrations of the positive and negative output strands represent the 
weighted sums of the respective RNA inputs, as described above. The complete DNA classifier 
consists of 20 hybridization probes and 14 helper strands (two for each transcript). A strand 
displacement cascade using two translator gates and two fluorescent reporters aggregate the signal 
generated by the hybridization module. Overall, the circuit consists of 62 different 
oligonucleotides.  
 
Rather than performing the subtraction at the molecular level as we have done in the previous 
example, we chose to use two distinct fluorophores to read out the positive and negative output 
strands individually, which allowed us to more quantitatively characterize performance of 
individual classifier components. A fluorescent reporter containing a 6-FAM (Fluorescein) (FAM) 
and a quencher was associated with positive/bacterial transcripts while a fluorescent reporter 
containing a 6-Carboxyl-X-Rhodamine (ROX) and a quencher was associate with negative/viral 
transcripts (Fig. 5a). Upon reporter calibration, the fluorescence signal from the ROX reporter can 
be subtracted from the FAM reporter signal to obtain a normalized signal used for classification 
([FAM]-[ROX] nM). Samples resulting in a normalized signal of [FAM]-[ROX] > 0 belong to the 
bacterial infection category while samples for which this signal is less than zero belong to the viral 
infection category.  
 
After assembling the molecular classifier, we first used synthetic DNA oligonucleotide targets to 
individually test all 20 hybridization probes. Upon thermal annealing and subsequent strand 
displacement, we confirmed that each oligonucleotide target triggered the intended fluorescent 
channel with the expected signal intensity (corresponding to a unit weight) while the signal 
remained near background in the other channel (Fig. 5b). Subsequently, we tested the molecular 
classifier using in-vitro transcribed RNA species. After addition of each RNA transcript to the 
molecular classifier, we again measured the fluorescence response across both channels. For each 
transcript, we only observed significant increase in fluorescence in the expected channel. After 
calibration and subtraction of both channel fluorescence signals, we obtained a normalized signal 
for each transcript addition ([FAM] – [ROX] nM). We found this normalized signal to be 
proportional to the weight assigned to each gene suggesting that the molecular weight 
implementation was performed correctly (Fig. 5c).  
 
Lastly, we tested our molecular classifier with samples containing RNA molecules matching the 
expression profiles from the training set microarray data. We selected 12 samples corresponding 
to six patients with viral and six patients with bacterial infections (Fig. 5d). We replicated the 
original gene expression profile by adding each cDNA amplicon based on its expected 
concentration as calculated from the microarray data. Each amplicon contained a T7 promoter for 
RNA transcription. Samples were then diluted to approximately 10 picomolar followed by in-vitro 
transcription which resulted in 1000x amplification (Fig. 5e). As expected, upon addition of each 
sample to the molecular classifier, we observed significant triggering in both fluorescence 
channels. All samples were classified correctly based on the normalized signal intensity. 
Furthermore, we found a strong correlation between the normalized signal intensity and the 
corresponding computational output for each sample as estimated using the corresponding SVM 
model (Fig 5f).  
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Discussion 
We introduced a systematic framework for translating an in silico gene expression classifier into 
DNA circuitry. We confirmed the robustness of this framework by building two distinct classifiers 
with varying numbers of weights and inputs. Using our approach, any in silico classifier can in 
principle be converted into a molecular classifier, synthesized for rapid prototyping and 
experimentally validated.  
We developed three novel building blocks to enable molecular computation with RNA transcripts 
as inputs. First, breaking up transcript detection into two separate steps, assisted hybridization and 
strand displacement, enabled us to robustly perform molecular computing with any RNA transcript 
as an input. Second, by varying the number of probes that hybridize to an RNA transcript we were 
able to differentially weigh the importance of transcripts. Third, by designing probes with shared 
output sequences we were able to compute the weighted sum of multiple transcript. So far, we 
have used these building blocks to create classifiers with up to seven distinct RNA inputs and up 
to five (positive or negative) probes per transcript. However, the size of the classifiers could in 

Figure 5 | A molecular classifier of host gene expression for respiratory infections diagnostics. a, Graphical representation of 
the viral vs. bacterial infection classifier. The classifier uses 7 genes. 20 hybridization probes assign weights ranging from -4 to +5 
to each transcript. The weighted sums of all transcripts with positive and negative weights are independently measured using two 
spectrally distinct reporters. b, As an initial test, we added 20 oligonucleotides (3nM) corresponding to the target sequences of each 
hybridization probe individually and measured the fluorescence response across both channels. Targets 1-10 corresponded to 
transcripts with positive weights (FAM) while targets 11-20 corresponded to transcripts with negative weights (ROX). As expected, 
each target resulted in specific triggering of the assigned reporter with almost no crosstalk. c, The molecular classifier was tested 
using in vitro transcribed RNA transcripts. Addition of each transcript resulted in a fluorescence signal proportional to the weight 
associated with a transcript. d, Gene expression data for 6 bacterial and 6 viral samples selected from the training set to validate the 
molecular classifier. e, Gene expression patterns for each sample were replicated by mixing gene amplicons containing T7 RNA 
polymerase promoter sequences in the ratios expected from the microarray data. Subsequently, the samples were in vitro transcribed 
resulting in production of RNA molecules with approximately 1000X amplification. Upon addition of the molecular classifier, 
fluorescence signals were recorded across both channels and a classification value was recorded.  f, All samples were classified 
correctly by the molecular classifier: a positive normalized signal was obtained for bacterial class samples and a negative for viral 
class samples. The normalized fluorescence signal matches the estimated computational SVM output, reflecting the correct 
implementation of the weights in a sample containing multiple RNA transcripts.  
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principle be scaled to tens or hundreds of targets with the number of weights only limited by the 
size of the transcripts. In principle, potential cross-talk between probes and incorrect targets 
becomes more likely when the number of probes is higher. Nevertheless, a thermodynamic 
simulation of these interaction can inform the selection of probes across the length of a target RNA 
transcript that exhibit little or no cross-talk. 
 
Compared with existing methods for gene expression analysis, our approach is well-suited for 
inexpensive and rapid examination of clinical samples (Supplementary Table 5). Because of its 
experimental simplicity, our workflow is fast: the combined reaction time for the assisted 
hybridization module and strand displacement reaction was under 20 minutes with no additional 
time required for computational analysis and data interpretation. More fundamentally, the amount 
of work required to perform gene expression classification using our framework is independent of 
the number of genes in the assay. The complexity of RT-qPCR experiments, the current gold-
standard for gene expression profiling in the clinic, in contrast scales linearly with the number of 
genes being analyzed. The DNA-based classification workflow thus dramatically reduces the need 
for liquid handling making it a good fit for point-of-care applications. RNA sequencing and 
barcoded RNA hybridization (Nanostring) also allow for multiplexed gene expression analysis in 
a single reaction but require expensive instrumentation or consumables. In contrast, we perform 
expression analysis by harnessing DNA computation while relying on inexpensive 
instrumentation: a thermocycler and a fluorescence reader. Finally, all alternative approaches 
provide information about the expression of individual genes in a panel, while our approach 
aggregates this information at the molecular level and provides a single, easy-to-interpret 
diagnosis, enabling fast turnaround.  

It should be noted however that the rate of the strand displacement reaction is highly dependent 
on the concentration of the RNA inputs, and including a pre-amplification step in the workflow 
would increase processing time. In this work, we demonstrated amplification of a mixture of 
cDNA amplicons in the low picomolar range using in vitro transcription before molecular 
classification. However, RNA transcripts are typically present at attomolar or femtomolar 
concentrations in tissue and blood RNA samples23, 37. Other amplification strategies, such as 
rolling circle amplification or loop mediated isothermal amplification, will need to be explored 
for further amplification and may be more suited for point of care applications43, 57-60. Moreover, 
the output of the classification can be measured using a different readout system such as a paper 
based substrate or a colorimetric reaction to further increase sensitivity or simplify readout of 
results40, 41.  

Still, by demonstrating a robust and modular approach for instrument-free analysis of complex 
gene expression signatures, our work closes an important gap in the existing toolbox for 
engineering affordable point-of-care diagnostics. The number of clinical studies examining how 
variations in peripheral gene expression are associated with disease diagnostics, monitoring and 
prognosis is ever increasing, and the use of molecular computation for gene expression analysis 
suggests a path towards translating this academic knowledge into future diagnostics.  
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Supplementary figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary figure 1 | Molecular overview of room temperature detection of RNA transcripts using DNA strand 
displacement.  
a, A hybridization probe and a fluorescent reporter are used to detect an in-vitro transcribed RNA transcript in solution via DNA 
strand displacement. By modifying the sequence composition of domain 'a' in the hybridization probe, we targeted different 
regions in a transcript while using the same fluorescent reporter. b, We targeted strand displacement probes directly to an RNA 
transcript. We found that out of 9 different target regions, only 5 of them resulted in significant triggering of the strand 
displacement reaction due to secondary structure in the target RNA. Target sites with higher predicted accessibility (lower free 
energy) were found to trigger the strand displacement reaction. 
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Supplementary figure 2 | Target secondary structure prediction and corresponding kinetic traces for strand displacement 
probes targeting different regions of a Citrine transcript at room temperature.  
Minimum free energy structures corresponding to each target region and adjacent 100 nucleotides were obtained from 
Nupack. The highlighted red region corresponds to the target sequence for each hybridization probe. We evaluated each RNA 
target by using different hybridization probes under identical experimental conditions ([Reporter] = 30 nM, [Hyb. probe] = 30 
nM and [Citrine RNA] = 30 nM). We observed a fluorescence response equivalent to the RNA input in probes targeting regions 
661-681 and 986-1006 nt while the other two regions showed very little triggering. 
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Supplementary figure 3 | Triggering of different hybridization probes using Citrine RNA and corresponding helper 
strands at room temperature.  
Experiments were carried out with 50 nM of fluorescent reporter, 40 nM of hybridization probes, 30 nM of Citrine RNA and 
400 nM of helper strands. We only observed a significant fluorescence response in Citrine Probe #3. These results indicate that 
addition of the helper strands is not enough to enable consistent triggering of the probes at room temperature. 
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Supplementary figure 4 | Triggering of Citrine hybridization probe under different concentrations of cellular mRNA using 
thermal annealing.  
Experiments were carried out with 50 nM of fluorescent reporter, 40 nM of hybridization probes, 30 nM of Citrine RNA and 400 nM 
of helper strands. Cellular mRNA was extracted from HEK293 human cell line and added to the annealing reaction at concentrations of 
40, 20 and 10 ng/µl. The concentration of citrine RNA in the annealing reaction was 125 ng/µl. We observed no significant change in 
triggering under different concentrations of cellular mRNA.   
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Supplementary figure 5 | Absolute thresholding of RNA transcripts using a DNA strand displacement circuit. 
a, Molecular overview of a thresholding/amplification cascade with RNA inputs. Upon thermal annealing, a translator gate is 
triggered based on the initial amount of RNA transcript. The output of the translator gate is consumed by an annihilator gate 
based on the concentration of a threshold species. If the concentration of a transcript is higher than that of a threshold species, a 
catalytic response triggers a fluorescent reporter. b, Steady state fluorescent signal after a two-hour reaction. All components were 
added in excess except for transcript and threshold species. A significant fluorescent response is observed when the concentration 
of transcript exceeds that of the threshold species (condition 2) and no significant fluorescent response is observed otherwise 
(conditions 1, 3 and 4). 
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Supplementary figure 6 | Molecular overview of the hTERT/GAPDH thresholding module.  
Circuits were tested with varying number of GAPDH hybridization probes, corresponding to different GAPDH weights. A 
positive and a negative translator cascade the output signal from the assisted hybridization reaction of hTERT and GAPDH 
respectively. The outputs of the translator gates are consumed in equimolar manner by the annihilator gate. Only excess positive 
translator output that is not consumed in the annihilation reaction triggers a catalytic amplifier resulting in a fluorescent signal.   

Supplementary figure 7 | Cross-talk analysis among viral/bacterial hybridization probes using thermodynamic 
simulations.  
We used Nupack, a software for analysis and design of nucleic acid structures, to simulate hybridization among a set of 20 probes 
corresponding to viral/bacterial classifier. To check for cross-talk, we check hybridization between every bottom and top DNA 
strand corresponding to 20 probes (400 hybridization simulations). We found very little cross-talk between strands from different 
probes. As expected, hybridization between the correct pairs was highly favorable (diagonal pattern in the plot). In a larger 
classifier, this approach can be implemented to exclude probes with cross-talk.  
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Methods 
 
DNA oligonucleotides 
All DNA oligonucleotides were purchased from Integrated DNA Technology (IDT). Individual 
DNA oligonucleotides were suspended to 100 �M and stored in water. Fluorophore and quencher-
labelled oligonucleotides were ordered HPLC purified, except for FAM-labelled oligonucleotides. 
Unlabeled oligonucleotides were unpurified.  
 
Hybridization probe preparation 
Hybridization probes consisted of annealed complex of two DNA oligonucleotides: a 21-nt bottom 
strand and a 56-nt top strand. The strands were mixed stoichiometrically with 30% excess of the 
bottom strand and then thermally annealed: heated to 98C for 10 seconds and cooled uniformly 
from 98°C to 25°C over the course of 73 minutes. 
 
Hybridization probes for the viral/bacterial classifier 
40 oligonucleotides (top and bottom strands) corresponding to 20 hybridization probes were order 
using IDT 25 nmole DNA Plate Oligo synthesis normalized to 100uM on IDT LabReady buffer. 
For purification, 20 top strands and 20 bottom strands were pooled together respectively and 
purified as a mixture using 12% Urea 19:1 acrylamide: bisacrylamide gel (SequaGel UreaGel 
System. National Diagnostics). Subsequently, gel bands were visualized using ultraviolet light 
with a fluorescent backplate, and then cut out and eluted into 1 ml 1X TAE, 12.5 mM Mg ++ for 
12 hours. Concentrations were calculated by measuring absorbance at 260 nm (Eppendorf 
Biophotometer plus) and using IDT-specified extinction coefficient.  
 
Strands displacement probe preparation 
Strand displacement probes (translators, reporters, catalytic amplifiers and annihilator gates) 
consisted of annealed complexes of two or more DNA oligonucleotides. The strands were mixed 
stoichiometrically with 10% excess of the target binding strand for the translator, catalytic 
amplifier gate and annihilator gate. Subsequently, DNA complexes were thermally annealed: 
heated to 98C for 10 seconds and cooled uniformly from 98°C to 25°C over the course of 73 
minutes. After annealing, individual probes were purified using a 12% non-denaturing PAGE gel 
as described above.  
 
Cellular mRNA preparation 
Cellular mRNA was extracted from HEK-293 (ATCC 30-2003) human cell line using a magnetic 
isolation kit for mRNA (NEB Next Poly(A) mRNA Magnetic Isolation kit #E7490). Cellular 
mRNA was aliquoted and stored in nuclease free water with RNAse inhibitor (NEB) at -80°C until 
needed.  
 
RNA target preparation 
Amplicons corresponding to RNA target sequences were generated by PCR amplification of HEK-
293 cDNA or human genomic DNA (ThermoFisher Catalog number 4312660). Amplification of 
each target was carried out with a corresponding forward primer containing a T7 RNA polymerase 
promoter sequence (5-TAATACGACTCACTATAGGG-3).  After amplification, each product 
was visualized on a 1.5% agarose gel and the correct band was excised and processed with a gel 
extraction kit (QIAGEN catalog number 28704). RNA targets were generated using T7 
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RiboMAX™ Express Large-Scale RNA Production System (Promega). Purification of RNA 
targets was carried out using a phenol/chloroform extraction protocol. Final RNA concentrations 
were determined using absorbance at 260 nm and estimated extinction coefficient for the 
corresponding single stranded RNA. RNA was aliquoted and stored in nuclease free water with 
RNAse inhibitor (NEB) at -80°C until needed.  
 
Time-course fluorescence measurements 
For experiments using individual transcripts, kinetic fluorescence measurements were performed 
using a Horiba FluoroMax 3 spectrofluorometer and Hellma Semi-Micro 114F cuvettes. An 
external temperature bath maintained reaction temperature at 25°C. A four-sample changer was 
used so that time-based fluorescence experiments were performed in groups of four. For 
experiments related to comparison across multiple transcripts (e.g hTERT vs. GAPDH classifier, 
viral/bacterial classifier), kinetic fluorescence measurements were performed using a 
fluorescence plate reader for higher measurement throughput (Biotek Synergy HTX). Thermal 
annealing and strand displacement reactions were carried out in 1X TAE, 12.5 mM Mg ++. 
 
Fluorescence normalization 
Arbitrary fluorescence units were converted to concentrations using a calibration curve of each 
reporter complex. To create a calibration curve, annealed reporter complex stock was suspended 
in 1X TAE/Mg++ and an initial baseline fluorescence signal was recorded. That was followed by 
stepwise addition of known concentrations of reporter triggering strands. After each trigger strand 
addition, the steady state was recorded.  
 
Viral/Bacterial SVM training and validation 
For training of the support vector machine algorithm, we obtained microarray data (NCBI 
GSE63990) for 273 ill patients and 44 healthy volunteers28. We processed the dataset by first 
selecting samples labelled only as bacterial or viral infections (70 and 115 samples respectively) 
and transforming the microarray gene expression ratios by logarithm of base 2 to estimate 
biological expression levels. We trained an SVM algorithm (classifier with a linear kernel) on this 
data set to distinguish between viral and bacterial classes using the svm.LinearSVC function from 
Python library sklearn. We used a squared hinge loss function with L1 norm while iterating through 
multiple penalty parameters to obtain SVM classifiers with varying number of features. We found 
9 models that employed less than 10 genes while maintaining a classification accuracy of 80% or 
higher in the training set. We evaluated these classifiers using a different microarray dataset (NCBI 
GSE6269) where they performed similarly well (AUC > 0.90)39. Finally, we selected the classifier 
with the highest AUC value for experimental implementation. 
 
Computational tool for generating hybridization probes from the in silico classifier 
First, we generated an input file containing each transcript sequence and their corresponding 
weights from the in silico classifier. A python script sliced the transcript sequence to generate 
helper strands (first and last 60 nts.), hybridization targets (30 nt. each) and hybridization probes. 
Hybridization probes were generated with either a positive or negative sequence domain based on 
the classifier weight. The output of this script contains each component sequence (helper, top 
strand hybridization probe, bottom strand hybridization probe and target sequence) and name.  
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Chapter 2: Combined amplification and molecular classification for gene expression 
diagnostics 
 
Abstract 
 
Gene expression profiling of clinical samples currently requires separate amplification and 
quantitation of each transcript. Here, we introduce a combined amplification and molecular 
classification strategy for gene expression classification. We adapted RASL (RNA-mediated 
oligonucleotide annealing, selection, and ligation) probes using an inexpensive ligation method 
and by incorporating a positive or negative barcode on each probe for molecular classification. 
Then, we designed 29 different probes for implementation of a classifier to distinguish among 
different human cancer cell lines. We demonstrated batch characterization of these probes using a 
next-generation sequencing platform. Finally, we analyzed and discussed how probe specific bias 
will impact the selection of a subset of probes to build a desired molecular classification system.   
 
Introduction 
 
Molecular gene expression analysis requires quantification of multiple RNA biomarkers in a 
given sample. In a biomarker discovery setting, this is currently performed using RNA-seq or 
microarray assays21, 49, 50, 55, 61, 62. These platforms enable the quantitation of thousands of 
different RNA biomarkers per sample. Once a subset of RNA biomarkers have been discovered 
and validated, gene expression analysis currently relies on quantitative PCR to measure a smaller 
number of RNA biomarkers relevant for a particular application. Quantitative PCR enables a 
faster and more cost-effective approach than RNA-seq or microarrays, but its implementation 
remains labor intensive and requires expensive instrumentation. A significant challenge is that 
each transcript requires a separate reaction for amplification and fluorescent measurement. 
Therefore, qPCR for gene expression analysis is not suitable for applications requiring 
inexpensive point-of-care screening or recurrent monitoring.  
 
In Chapter 1, we demonstrated a strategy where gene expression classification is performed by a 
set of DNA probes without the need for measuring each individual biomarker. Therefore, any 
given panel of gene expression biomarkers can be classified in an individual reaction which 
drastically simplifies sample preparation requirements. However, the proposed workflow 
enabled classification of RNA samples at high concentration (picomolar to nanomolar). Most 
diagnostics applications require classification of RNA samples in the fentomolar range. 
Therefore, enabling both rapid amplification and molecular classification of RNA samples is 
necessary for a practical implementation of this technology. 
 
There are several approaches for targeted RNA amplification including NASBA, rolling-circle 
amplification, DASL, RASL and multiplex PCR63-68. Upon evaluating and characterizing several 
of these methods, we decided to implement a molecular classification workflow using RASL 
probes. RASL (RNA-mediated oligonucleotide annealing, selection, and ligation) is commonly 
used for targeted RNA sequencing for the purpose of gene expression quantitation67. First, 
custom probe pairs are designed for each gene of interest. Each pair is designed to anneal to the 
target RNA in an adjacent manner such that the resulting gap can be ligated. Each probe also 
contains universal amplification overhangs. Experimentally, the probe pairs are hybridized to the 
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mRNA and separated from total RNA using oligo(dT)-biotin beads following by ligation and 
clean-up. PCR amplification of the ligated probes enables accurate amplification of low total 
RNA amounts (10 nanograms) for gene expression quantitation using next-generation 
sequencing.  
 
In this work, we demonstrated a novel approach for combined amplification and molecular 
classification for gene expression analysis using modified RASL probes. We created RASL 
probes with an additional classification sequence domain targeting TaqMan reporters with two 
distinct fluorescence profiles. This enables a classification output to be activated at the same time 
as PCR amplification of different ligated probes. Since RASL probes typically display biased 
amplification profiles67, 69, we created a strategy for batch testing many different probes in order 
to select those that would implement the best classification model. Finally, we analyzed the bias 
associated with each probe and discussed how a potential classifier can be designed based on this 
method.  
 
Results 
 
Overview of combined amplification and classification of RNA samples 
We design a novel approach for building a molecular gene expression classifier by adapting 
RASL probes, commonly used for targeted RNAseq, into a combined amplification and 
classification workflow using a two-color fluorescent system. First, a relevant gene expression 
dataset is used to train a support vector machine to build a classification model that differentiates 
between two class labels (e.g. healthy vs. diseased). The resulting model consists of a list of 
relevant genes and corresponding weights capable of performing the classification. Next, a set of 
RASL probes are designed to target each of these transcripts. Each RASL probe contains either a 
positive or negative sequence barcode designed to trigger fluorescent reporters (FAM and ROX). 
Since each probe is expected to have a different amplification bias, multiple probes per gene are 
generated and characterized together. For this purpose, all probes are combined and evaluated on 
the presence of an RNA sample followed by next generation sequencing. This data is then used 
to quantify probe bias and determine a subset of probes capable of performing the classification 
task. Finally, this subset of probes can be used to implement a rapid gene expression diagnostics 
system where tens or hundreds of RNA transcripts can be amplified and serve as input for a 
classification problem.  
 

 
 
 
 
 
 

Figure 1 | Combined amplification and classification of RNA samples using modified RASL probes. An in-silico classifier is 
trained and validated on publicly available gene expression data. Then, multiple probes are designed and synthesized to target the 
set of genes in the classifier. This set of probes is hybridized, ligated and amplified using an RNA sample with known gene 
expression data. Using next-generation sequencing, the number of amplified probes can be counted in batch in order to determine 
probe specific amplification bias. Subsequently, this data informs the selection of an optimal subset of probes that will implement 
the desired classification model.  
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Adapting RASL probes and workflow for molecular classification 
 
In a typical RASL experiment, a set of two or three probe pairs are designed for every gene that 
is targeted. These probes are hybrid RNA/DNA such that the gap can be ligated using RNA 
ligase 2, a very efficient ligase enzyme. Each probe pair consists of a hybridization domain, 
targeting the RNA transcript, and conserved overhangs for PCR amplification. After probe 
amplification, next generation sequencing is used to quantified each probe count and perform 
differential gene expression analysis across different samples. Importantly, since each probe 
exhibits different ligation and amplification efficiency, the resulting data can only be used for 
relative expression difference between samples instead of absolute quantitation.  
 
In order to enable inexpensive prototyping of our RASL-based molecular classification probes, 
we first modified the RASL probes by using probes made up entirely of synthetic DNA. These 
probes are about one order of magnitude cheaper to synthesize. In order to enable ligation of 
DNA probes on an RNA transcript target, we substituted RNA ligase 2 for SPLNTR, a novel 
enzyme that enables DNA-DNA ligation on RNA target. We compared both enzymatic ligation 
reactions and we observed a minimal decrease on ligation-amplification efficiency. Specifically, 
there is observable increase in non-specific ligation in the absence of target. However, using 
DNA probes resulted in an order of magnitude reduction in the cost of probe synthesis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, we modified RASL probes by incorporating a sequence barcode that associates each probe 
with either a positive or negative weight in the classifier. Specifically, a 25-nucleotide barcode 
triggers a FAM or ROX fluorescent reporter during PCR amplification. Any gene with a positive 
weight in the classifier is assigned a probe pair with the barcode triggering the FAM reporter and 
viceversa. The FAM or ROX reporters correspond to TaqMan probes. These fluorescent 
reporters are commonly used for sequence-specific fluorescent triggers for quantitative PCR. For 

Figure 2 | Overview of existing RASL-seq and our modified method for molecular classification a, Overview of RASL-seq, a 
common method for targeted gene expression counting using next-generation sequencing. Multiple probe pairs are hybridized to their 
RNA targets followed by ligation of gaps. The ligated products can be amplified using common primers and then used as input for 
next generation sequencing. Sequencing data is then used for gene expression analysis.  b, Our modified RASL probes contain a 
positive or negative barcode (red or green domain) associated with each probe. The number of probes that bind to each transcript can 
be varied to tune the effective amplification weight on each transcript. During amplification, two fluorescent reporters (FAM and 
ROX) are triggered based on the presence of each barcode. This fluorescent signal can then determine the classification outcome for a 
given sample.  
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this work, they were designed to be triggered by either the positive or negative barcode in each 
probe.  To test this, we two pairs of probes, each containing either a barcode triggering the FAM 
or ROX barcode. We amplified the probes after ligation using a TaqMan amplification master 
mix containing both reporters. We titrated each probe separately under absence of the other 
probe to check for the sensitivity range and potential cross-talk among fluorescence channels. As 
expected, we found a linear relationship between the log2 of the concentration of the probe and 
the fluorescence signal in the corresponding channel. We found no observable cross-talk.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Translating an in-silico classifier into RASL probes 
 
We decided to test our approach for joint amplification and classification of RNA samples by 
building a cancer cell line molecular classifier. Cancer cell lines are easily available and can 
generate significant amounts of RNA for prototyping. We selected three cancer cell lines (HEK-
293, MCF7, HEPG2) already available in our laboratory and retrieve their corresponding gene 
expression profile from the Cancer Cell Lien Atlas70. Using this gene expression profile, we built 

Figure 3 | Modified RASL probes were individually characterized for a different ligation condition and two-color system. a, 
We tested DNA-RNA probe hybrids and DNA probes by performing ligation of two probes (GAPDH and CCL17) on HEK-293 RNA 
and a negative control. We expect no amplification of CCL17 since it is not expressed in this cell line. In both cases we found specific 
early amplification of GAPDH probe with RNA and little amplification in the other conditions. b, Titration of RASL probes modified 
with two-color fluorescent barcode. Each probe was titrated into amplification mix (52 pM, 16 pM, 4.7 pM, 1.4 pM, 0.42 pM) under 
the absence of the other probe. We found amplification of the right fluorescence channel upon addition of the corresponding probe 
with no observable cross-talk.   
 

a 

b 
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an arbitrary classifier to distinguish HEK-293 from MCF7 and HEPG2. As in Chapter 1, we 
implemented a Support Vector Machine (SVM) training algorithm to select a number of 
transcripts and associated weights that would implement the classification task.  The resulting 
classifier consisted of five different transcripts with corresponding weights from -5 to +4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We decided to build a molecular implementation of this classifier by designing DNA probes that 
would hybridize to the corresponding transcripts. However, we expect the ligation and 
amplification of each probe to vary significantly based on previous characterizations of the 
RASL system. This problem is inherent to other approaches that rely on amplification of 
individual transcripts such as multiplex PCR or rolling circle amplification. Based on analyzing 
data associated with existing RASL experiments, we expected the probe associated bias to be 
within an order of magnitude measure by amplification efficiency. This probe associated bias 
would make it difficult to build a molecular classifier where each probe would contribute with a 
unit weight to the classification problem as we demonstrated in Chapter 1. Therefore, we decided 
to order six different probes for each transcript and then characterize how the bias would affect 
the implementation of a molecular classifier.  
 
Probe design started by segmenting each RNA transcript sequence into 40 nt. segments, since 
each probe hybridizes to 20 nucleotides of the target. Probe sequences were filtered to have a GC 
content between 30% and 70%, a melting temperature between 60C and 85c and to contain either 
an 'A' or a 'T' at the donor base. Probes that satisfied these criteria were selected and the adaptor 
universal sequence containing the universal priming domain and the positive or negative barcode 
was added to the corresponding end. Subsequently, these probes were evaluated for self-
complementary using NUPACK and those with high secondary structure were excluded. We also 
evaluate each probe per transcript to avoid any overlap in the target sequence. After meeting 
these conditions, we found at least 6 probes per transcripts except for transcript MT2A for which 
we only found 5 probes. Overall, we designed and synthesized 29 different probe pairs. In order 
to characterize probe bias, we carried out a batch experiment were the pooled probes were 
ligated, amplified and sequencing using RNA from three different cell lines as input. As with a 

Figure 4 | Overview of in-silico cell line classifier to distinguish MCF7 vs. HEK and HEPG2. a, The classifier displayed very 
good performance to differentiate MCF7 against the other two cell lines. b, The necessary classification performance was achieved 
with only five transcripts and associated weights spanning from -5 to +4.   
 

a b 
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traditional RASL experiments, we expect that the sequencing counts of each probe would 
correspond to the gene expression differences between the cell lines adjusted by each probe bias. 
 
After sequencing, we analyzed sequencing reads by counting each probe across the three 
different cell lines. First, we compared the sequencing counts of each probe with the gene 
expression profile in the database used to train the in-silico classifier. Overall, we found that the 
sequencing counts for each probe matched the relative gene expression differences in the 
database. Specifically, there is perfect agreement with the expected expression for gene FTL and 
AKR1C2 while for the other three genes there was some discrepancy with one of the cell lines. 
Despite these gene expression differences, we found that all probes targeting a given RNA target 
resulted in the same expression pattern with very few exceptions (Probe #5, #8, #23). Therefore, 
the probes are likely capturing actual gene specific expression differences between the cell lines 
based on the gene they are targeting.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We analyzed the sequencing read counts associated with different probes across the same gene 
target to evaluate probe bias. For example, Probe #1 and Probe #2 target gene FTL and they 
captured the same gene expression pattern but display sequencing counts that differ by three 
orders of magnitude. We estimated probe bias by assigning a baseline value of 1.0 to the probe 
with the maximum sequencing read count per given gene and comparing every other probe 

                      Cell lines 
HEPG2          HEK-293            MCF7 

Expected expression 

Seq. 
counts 

Figure 5 | Observed gene expression differences between batch modified RASL experiment and expected gene expression 
data from Cancer Cell Line Atlas. Each subplot corresponds to the sequencing counts for each probe (y-axis) and the 
corresponding expected gene expression for each cell line (x-axis). FTL and AKR1C2 resulted in sequencing counts that matched 
closely to the expected sequencing data.  



www.manaraa.com

  

targeting that gene. We found that 89% of probes fall within 3-order of magnitudes from the 
probe with highest sequencing counts. This is significantly higher bias than that observed in 
reported RASL experiments where usually probes fall within 1-order of magnitude from one 
another. One reason for this difference could be the use of SPLNTR ligase and DNA probes 
instead of RNA ligase. Even though we evaluated specificity and sensitivity between these two 
enzymes, it's possible that the bias between the probes is more pronounced using SPLNTR. 
Another possible explanation is that our criteria for probe selection (GC content, melting 
temperature) was no stringent enough to select probes with similar hybridization and ligation 
activity resulting in lower bias. Importantly, we compared the bias for a given probe across the 
three cell lines (HEK-293 vs. HEPG2 and HEK-293 vs. MCF7) and we found that it is 
remarkably consistent across all of them. This suggest that characterizing probe bias in a given 
RNA sample is sufficient to extrapolate its behavior in any sample. Next, we verified that the 
bias measured during the batch sequencing experiment would correspond to that of measuring 
the amplification profile in a quantitative-PCR experiment. For this purpose, we selected 11 
probes corresponding to MT2A and COX6C and individually measured their efficiency in HEK-
293 RNA. The resulting CT values from the qPCR experiment were compared to the sequencing 
counts for each probe. We found that the sequencing batch experiment is highly predictive of the 
bias of each individual probe measured via qPCR.  
 
 

 
 
 
 
 
Despite observing over three orders of magnitude in probe bias in our sequencing experiment, 
we found that this bias is consistent across cell lines and it is highly predictive of individual 
probe behavior as measured by qPCR. Therefore, a viable alternative to build a molecular 
classifier is to first characterize a large subset of probes targeting relevant genes followed by 
selection of a subset probes that will implement the classification task. Importantly, the bias for 
each probe can be harnessed to assign weight values to each transcript. In contrast to our 
previous implementation, each probe consists of a random weight value that needs to be 
characterized prior to selecting the optimal subset of probes.  
 
 
 

a b c 

Figure 6 | Characterization of probe bias. a, To estimate probe bias, we calculated the difference in sequencing counts (log10) 
between every probe and the probe with the highest counts (normalized to zero). We performed this analysis across each gene 
and cell line in order to estimate the bias distribution of the probes. b, We found that the bias is probe specific and does not 
change across different cell lines c, Finally, we found that the bias observed during the batch sequencing experiment 
corresponded well to the amplification of each individual probe in a qPCR setting.  
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Discussion 
 
In this chapter, we demonstrated that RASL probes can be easily adapted for the purpose of 
building a molecular classifier. We modified RASL probes by enabling an inexpensive ligation 
protocol using SPLNTR and DNA probes. We included a positive or negative barcode in each 
probe to enable a two-color classification scheme during amplification and experimentally 
validated this approach using RNA from human cancer cell lines. Finally, we built a 
classification model in-silico to distinguish among three cancer cell lines. Then, we designed and 
synthesized corresponding RASL probes with barcodes associated to this classification problem. 
We tested all probes in batch using next generation sequencing in order to determine the 
amplification bias associated with each probe. We found that this bias was significant and made 
the implementation of a molecular classifier more challenging that we expected.   
 
We expect that any targeted amplification method of RNA transcripts would result in significant 
bias relative to the original gene expression profile. To circumvent this challenge, 
characterization of a significant number of probes could be carried out in advance and then the 
correct subset of probes could be selected. Alternatively, each transcript could be targeted with 
both positive and negative probes such that a combination of these probes would implement the 
correct associated weight. Given the low cost of DNA synthesis and the possibility to fit tens of 
different probes within an RNA transcript, a subset of probes that implements the correct 
classification model should be within reach. Generating probes with a better bias distribution 
would require testing a smaller set of probes and it would facilitate the implementation of a 
molecular classifier.  
 
Gene expression profiling is increasingly an important clinical metric for diagnosis a wide 
number of human diseases. Currently, this is carried out by amplifying and measuring each 
individual RNA transcript in a sample using qPCR. Instead, we demonstrated an approach for 
amplification and classification of samples in a single reaction. This would drastically reduce the 
complexity of gene expression profile and potentially enable a point-of-care solution to this type 
of diagnostics. Even though this approach would result in a more complex development stage, 
once a final subset of probes is found, the implementation is drastically simpler than the existing 
method.  
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Chapter 3: DNA Assembly for Nanopore Data Storage Readout  
 
Abstract 
 
Synthetic DNA is becoming an attractive substrate for digital data storage due to its density, 
durability, and relevance in biological research. A major challenge in making DNA data storage 
a reality is that reading DNA back into data using sequencing by synthesis remains a laborious, 
slow and expensive process. Here, we demonstrate successful decoding of 1.67 megabytes of 
information stored in short fragments of synthetic DNA using a portable nanopore sequencing 
platform. We designed and validated a novel assembly strategy for DNA storage that drastically 
increases the throughput of nanopore sequencing. Importantly, our assembly strategy is 
generalizable to any application that requires high-throughput nanopore sequencing of small 
DNA amplicons.  
 
Introduction  
 
The digital revolution has resulted in the exponential growth of electronic data storage. During 
the past three decades, the amount of digital information has doubled every 2.5 years and it is 
expected to reach 375 exabytes by 204071, 72. In anticipation of this significant increase in data 
storage demand, synthetic DNA has been widely studied as a promising storage medium for data 
archival12-15, 17, 71, 73-76. DNA offers ultrahigh information density capabilities in the order of 
hundreds of petabytes per gram13, 14 and under proper conditions it can retain information for 
millions of years75, 77. Furthermore, technologies that enable high-throughput reading and writing 
of synthetic DNA have been rapidly evolving in parallel with the advent of the genomics 
revolution78. Nevertheless, several challenges remain unaddressed before DNA storage is able to 
meet the existing demand for data storage and become a cost-effective alternative to silicon.  
 
DNA sequencing is used to read the information encoded in DNA back into digital bits.  
Currently, sequencing by synthesis (SBS), as commercialized by Illumina, is the leading 
technology for high-throughput sequencing78. In previous work, we demonstrated the ability to 
write over 200 megabytes of information in about 2 billion nucleotides while recovering all data 
without any bit errors using Illumina SBS technology74. Despite its low error rate and high 
throughput, SBS technology has several shortcomings in the context of DNA storage. In its 
current form, SBS technology is poorly fitted to end-to-end automation, requires bulky and 
expensive instrumentation and access to sequencing data is delayed until completion.  
 
Nanopore sequencing, as commercialized by Oxford Nanopore Technologies (ONT), offers a 
sequencing alternative that is portable and automation-friendly, resulting in a better alternative 
for a real-time "read head' of a molecular storage system79-83. Specifically, ONT MinION is a 
four-inch long USB-powered device containing an array of 512 sensors, each connected to four 
biological nanopores, capable of producing up to 15 gigabases of sequencing output per flowcell. 
Each nanopore is built into an electrically resistant artificial membrane. During sequencing, a 
single strand of DNA passes through the pore resulting in a change in the current across the 
membrane. This electrical signal is processed in real time to determine the sequence identity of 
the DNA strand. In the context of DNA storage, real-time sequencing enables the ability to 
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sequence until sufficient coverage has been acquired for successful decoding without having to 
wait for an entire sequencing run to be completed (Figure 1b). 
 
Nanopore sequencing presents unique challenges to decoding information stored in synthetic 
DNA. In addition to a significantly higher error rate compared to SBS, nanopore sequencing of 
short DNA fragments results in significantly lower sequencing throughput due to slow DNA 
capture kinetics compared to read time. To address this, previous work by Yazdi et. al. 
demonstrated a DNA storage workflow where 17 unique large DNA fragments (~1000 bp.) 
encoding for a 3kB file were synthesized, and subsequently sequenced and decoded using ONT 
MinION platform17. However, existing scalable approaches for writing synthetic DNA rely on 
parallel synthesis of millions of short oligonucleotides (i.e. 100-200 bases in length) where each 
oligonucleotide contains a fraction of an encoded digital file. Sequencing of such short fragments 
results in significantly lower sequencing throughput in the ONT MinION, which limits its 
application as a reading method for DNA storage. Therefore, until now, there was no scalable 
and cost-effective end-to-end method to enable a DNA storage workflow using nanopore 
sequencing. 
 
In this work, we demonstrate decoding of three files totaling 1.67 megabytes of digital 
information stored in 111,499 oligonucleotides using nanopore sequencing (Figure 1a). Our 
work results in a 2-order of magnitude increase in demonstrated sequencing and decoding 
capacity using nanopore sequencing for a DNA storage application (Figure 1b). Our real-time 
sequencing implementation for DNA storage provides a faster and more flexible alternative to 
decoding digital files encoded in DNA where sequencing can be carried until enough coverage 
has been acquired for decoding (Figure 1c). To achieve this, we implemented a strategy that 
enables random access and assembly of a given DNA file stored in short oligonucleotides (150 
bp.) into large DNA fragments containing up to 24 oligonucleotides (~5000 bp.). We evaluated 
Gibson Assembly and Overlap-Extension Polymerase Chain Reaction (OE-PCR) as suitable 
alternatives to iteratively concatenate and amplify multiple oligonucleotides in order to generate 
large sequencing reads. Furthermore, we implemented a new consensus algorithm capable of 
handling high error rates associated with nanopore sequencing. We demonstrated this approach 
by amplifying, assembling and sequencing 4 different files stored in DNA with significant 
improvements in capacity (bases/flowcell) and overall throughput (bases/second) (Figure 1d). 
We were able to decode files with a minimum sequencing coverage as low as 22x, compared to 
36x in our previous work74. Furthermore, our Gibson assembly concatenation strategy is 
generalizable to any amplicon sequencing application where higher nanopore sequencing 
throughput is desirable. 
 
Results 
 
Consecutive Gibson assembly for DNA storage file retrieval 
 
The overall yield and quality of a nanopore sequencing run is dependent on the molecular size of 
the DNA to be sequenced. DNA molecules translocate through the pore at a rate of 450 bases/sec 
while it can take between 2 to 4 seconds for a pore to capture and be occupied by the next DNA 
molecule. Therefore, short DNA molecules result in a higher number of unoccupied pores over 
time which increases the rate of electrolyte utilization above the membrane. Ultimately, this 
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results in a faster loss in polarity and lower sequencing capacity and overall throughput. ONT 
estimates that the optimal DNA size to maximize sequencing yield is around 8 kilobases while 
the minimum size is 200 bases. Below 200 bases, event detection and basecalling is not possible. 
Therefore, a PCR-based random-access strategy for sequencing of the files encoded in 150 bp 
DNA oligonucleotides would have resulted in very low sequencing yield and limited decoding 
capabilities.  
 
Thus, we developed an assembly method 'Consecutive Gibson Assembly' to assemble large 
sequencing reads from short amplicons for the purpose of enabling higher sequencing throughput 
from nanopore sequencing (Figure 2a). We applied this strategy to enable random access and 
assembly of digital files encoded in oligonucleotide pools containing multiple files in millions of 
oligonucleotides. Random access is fundamental to the scalability of DNA storage eliminating 
the need to read all the data stored in a particular DNA pool. Each file in the oligo pool consisted 
of a set of 150-bases oligonucleotides with unique 20-nucleotide sequences at their 5' and 3' ends 
for PCR-based random-access retrieval (i.e. file ID) and a 110-nucleotide payload encoding for 
the digital information.  Based on the number of amplicons to be assembled, separate PCR 
amplification reactions are carried out with primer sets designed to amplify a given file ID 
(Figure 2b). Each primer set also contains sequentially overlapping overhangs necessary for the 
downstream assembly.  
 
Overhang sequence design was performed using a nucleic acid thermodynamic simulation 
software (NUPACK84) to avoid primers with self-binding structures and cross-talk between 
orthogonal overhangs among other constraints (Supplementary figure 2). First, we generated a 
random set of 30-nucleotide DNA sequences with GC content between 40% and 60%, while 
avoiding 4-nucleotide repeats of G or C. Subsequently, we used NUPACK to estimate 
intramolecular secondary structure probability and selected those sequences with minimal 
secondary structure. This selection step was necessary to enable PCR reactions with comparable 
amplification efficiencies, which facilitated the generation of the assembly fragments. Next, we 
evaluated our overhang primer set for orthogonality by estimating binding probability across all 
possible primer pairs. Based on this cross-talk mapping, we then selected a subset of primers that 
exhibit minimum cross-talk among all pairs. We repeated this process to create overhangs for 
every new file to be assembled since each file contained different primer sequences. We expect 
that selecting an overhang sequence subset with minimal cross-talk can result in higher 
efficiency in the assembly process. We used this DNA sequence design method to generate 
overhang sequences for each file assembly. 
 
Upon PCR-amplification of each file with its corresponding priming pairs, PCR products are 
combined, purified using magnetic beads and combined into a Gibson assembly reaction. During 
the Gibson reaction, the exonuclease creates single-stranded 3´ overhangs that enable the 
annealing of fragments that share complementarity at one end while the polymerase fills in gaps 
within each annealed fragment. Finally, a DNA ligase seals nicks in the assembled DNA. The 
product of the Gibson assembly was then amplified using primers corresponding to unique 
sequences present at the ends of the assembly product. We implemented this approach to 
generate a 6-fragment assembly for each file, respectively. Using agarose gel electrophoresis, we 
found that the amplified Gibson Assembly product was the expected size (1,110 base pairs) with 
very small amounts of secondary products (Figure 2c). 
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To generate even longer fragments, we performed a second Gibson Assembly iteration (Figure 
2d). The first assembly product was PCR-amplified using primers containing a second set of 
complementary overhangs separate PCR reactions. As with the first assembly, the PCR products 
were purified, combined into a Gibson assembly reaction and amplified using primers 
corresponding to unique sequences present at the ends of the assembly product. We implemented 
this approach to generate a 4-fragment second assembly resulting in 24-fragments of each 
individual oligonucleotide in the final product. Using agarose gel electrophoresis, we found that 
the amplified second assembly product was the expected size (4,590 base pairs). However, we 
also observed significant quantities of shorter DNA fragments that appear to correspond to 
smaller assembly sizes (Figure 2e). The correct fragment size was gel extracted and used as 
input material for ONT nanopore sequencing.  
 
We implemented Consecutive Gibson Assembly and nanopore sequencing on three files: a 
picture of the space shuttle (Shuttle, 115 kilobytes), a picture of the earth viewed from the Apollo 
17 mission (Apollo, 1.5 megabytes) and a picture of Leonardo da Vinci Vitruvian Man 
(Vitruvian, 132 kilobytes). The Vitruvian Man had an encoding allowing for homopolymers in 
the DNA sequence while the other two files did not. The Space Shuttle file and the Apollo file 
were concatenated into 24-fragment assemblies while the homopolymer file was concatenated 
into a 6-fragment assembly. We successfully sequenced and decoded all these files using 
Illumina sequencing by synthesis. 
 
Consecutive Gibson Assembly enables concatenation of DNA amplicons with identical primer 
regions into larger DNA fragments. The assembly size is determined by the number of fragments 
with unique complementary overhangs at each end. Furthermore, since the assembly product 
contains unique sequences at its end, a final amplification step can target the intended assembly. 
Furthermore, we demonstrated that this process can be iterative: the product of the first assembly 
can then become the initial fragment for a second assembly. 
 
Payload concatenation using OE-PCR 
 
Although Consecutive Gibson Assembly can concatenate multiple oligonucleotides, we found it 
difficult to assemble more than six fragments in a single reaction. We observed that the relative 
proportion of side products increased with the number of attempted fragments in the assembly. 
Since all fragments in the assembly contain a conserved file ID region, it is possible that base-
pairing across this region resulted in the generation of these side products. Furthermore, the 
iterative Gibson assembly strategy requires significant sample preparation which hinders its 
applicability in an end-to-end DNA storage workflow.  
 
As an alternative, we developed an additional assembly method “Overlap-Extension Polymerase 
Chain Reaction” (OE-PCR) (Supplementary Fig. 3a). In contrast with Consecutive Gibson 
Assembly, this assembly strategy requires that a DNA file is first synthesized into groups where 
each group has a unique forward ID and a unique back ID. In the first step of PCR, overlapping 
sequences between each DNA group can be created by using primers containing a 5’ overhang 
complementary to the molecule it is joined to. All amplified DNA groups are mixed together, 
and DNA groups with overlapping regions can be fused together via PCR with N cycles (N 
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equals to the number of DNA groups). Finally, the outermost primers are used to selectively 
amplify the full length of multiple-fused DNA.  
 
We selected a text file corresponding to 365 Foreign Dishes (Dishes, 32 kB), a vintage book 
originally published in 1908. We encoded this file into 2,042 oligonucleotides and split into 10 
groups (i.e., each group has about 206 oligonucleotides, and each group has its own unique IDs). 
We successfully used OE-PCR to assemble 10 fragments into a long DNA fragment with no 
visible side products (Supplementary Fig. 3b). This greatly reduced the sample preparation 
process compared to the Consecutive Gibson Assembly approach since no gel-purification was 
required. The assembly product was purified using magnetic beads and then used as input 
material for ONT nanopore sequencing. 
 
Nanopore sequencing and decoding 
 
Each file was amplified, assembled and then sequenced in separate nanopore flow cells (R9.4 
chemistry). Each sequencing run generated reads for 48 hours until completion. The Earth-
Apollo file was sequenced using two MinION flowcells to generate enough reads for successful 
decoding. Sample preparation was done accordingly to ONT instructions for sequencing using 
1D2 chemistry, which results in higher sequencing accuracy. 1D2 basecalling was performed 
after sequencing and resulted in 15-25% 1D2 reads , which were available for decoding. We 
analyzed these reads to evaluate the throughput, quality and decoding potential of each run.  
 
For the 1.5 MB Earth-Apollo file, two sequencing runs generated a total of 267,152 1D2 reads 
for analysis and decoding. The size distribution of nanopore reads corresponded closely to the 
gel-extracted input DNA, indicating that most reads corresponded to the full assembly (Figure 
3a). We aligned each read to the expected payloads and we found that on average each read 
contributed to 18 alignments, close to the ideal maximum of 24 (Figure 3b). This resulted in a 
43X average sequencing coverage for 102,084 reference payloads (Figure 3c). For comparison, 
4.4M reads would have been necessary to achieve the same sequencing coverage without any 
assembly. We found a wide distribution in the quality score of all sequencing reads by analyzing 
the Phred quality score estimated by ONT (Figure 3d). The average Phred quality score per read 
was 15.33, corresponding to an estimated error rate probability of 2.93%. Additionally, we 
estimated the overall error rate based on our alignment and we found an error rate of 6.87%. For 
insertions and deletions, we found no significant bias across bases. However, substitution error 
rates were significantly higher between purines (A to G and G to A) and pyrimidines (C to T and 
T to C) (Figure 3e). We found a similar error distribution across all files sequenced.   

We performed an equivalent sequencing analysis for the other three files (Supplementary Fig. 
4, 5 and 6) and then we attempted decoding each file using the 1D2 reads as inputs to an 
improved DNA codec74. First, we performed multiple sequential alignments of the front and 
back file ID in each read and then selected the sequence in between, which should correspond to 
the payload sequence. Then, the payload sequences were clustered based on similarity76, 
followed by determining a consensus sequence for each cluster, and error-correction across 
consensus sequences to recover the original file. 
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We employed a new consensus algorithm that improves upon the algorithm from our previous 
work74. In the new algorithm consensus sequence is recovered via a process where pointers for 
payload sequences are maintained and moved from left to right, and at every step of the process 
the next symbol of the sequence is estimated via a plurality vote. For the payload sequences that 
agree with plurality, the pointer is moved to the right by 1. But for the sequences that do not 
agree with plurality, the algorithm classifies whether the reason for the disagreement is a single 
deletion, an insertion, or a substitution. This is done by looking at the context around the symbol 
under consideration. Once this is estimated, the pointers are then moved to the right accordingly. 
The key difference between our new algorithm and our previous implementation74 is that in cases 
when disagreements cannot be classified, we do not drop respective payload sequences from 
consideration, but attempt to bring them back at later stages. This allows us to successfully 
decode from notably lower coverages because more information about the sequences was used 
overall.  

We successfully decoded both non-homopolymer files (Apollo and SpaceShuttle files) 
concatenated using a 24-fragment sequential Gibson assembly. We were also successful 
decoding the Dishes assembled using the 10-fragment OE-PCR strategy. By subsampling the 
number of reads used for decoding, we found that minimum coverages of 23x, 22x and 27x were 
sufficient to decode the Apollo, Shuttle and Dishes file, respectively. Nevertheless, despite 
having a coverage of 166x, we were unable to decode the homopolymer Vitruvian Man 
file.  Even though the overall error rate was similar to that of the non-homopolymer files, we 
found that nanopore sequencing tends to underestimate the length of homopolymer runs, leading 
to correlated deletion errors across payload sequences that cannot be corrected by the consensus 
algorithm. 24.3% of all original sequences corresponding to the Vitruvian Man file contained a 
homopolymer run of length 5 or more. However only 57% of reads corresponding to those 
sequences had a run of such length. 

We found that increasing the input DNA size resulted in significant improvements in the 
sequencing throughput. To evaluate this improvement, we quantify sequencing throughput across 
5 sequencing runs of equivalent quality. When comparing sequencing runs based on the input 
DNA fragment size, we found a modest reduction in the number of reads as the fragment size 
increased (Figure 5a). Despite this modest reduction in total reads, we found a 7-fold increase in 
sequencing throughput across the fragment size range we evaluated (between 600 and 4700 base 
pairs) (Figure 5b). This increase in sequencing yield was necessary to enable the successful 
decoding of a 1.5 MB file while sequencing using only two MinION flowcells.  
 
Discussion 
 

We demonstrated megabyte-scale decoding of digital files encoded in synthetic DNA using a 
portable nanopore sequencer. In combination with our robust encoding scheme, our assembly 
framework enabled sequencing and decoding of a 1.5-megabyte file using only two ONT 
MinION flowcells. We also demonstrated that this method is compatible with a PCR-based 
random-access strategy for DNA storage. Despite introducing a modest increase in preparation 
work, our assembly strategy can increase the effective coverage of nanopore sequencing in other 
applications that require sequencing of short DNA amplicons.  
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Both assembly methods described in this paper enabled concatenation of synthetic 
oligonucleotides into larger DNA fragments with unique sequences and their ends. This feature 
enabled selective amplification of the final assembly product. Iterative Gibson assembly is 
compatible with generalizable file architecture where each oligonucleotide in a given file is 
synthesized with the same file ID at each end. Therefore, the synthesis of a given file is agnostic 
to its later assembly step. In contrast, OE-PCR requires each file to be synthesized in groups 
containing unique overhang sequences based on the structure of the final assembly. Despite 
limiting the applicability of this assembly to files encoded with the necessary overhang sequence 
or to groups of files to be sequenced together, this strategy resulted in better assembly results and 
a simpler sample preparation workflow. Other strategies such as Golden Gate assembly or rolling 
circle amplification are also potential alternatives to enable longer sequencing reads from short 
oligonucleotides used for DNA storage85.  
 
The future of DNA storage will likely depend on technologies that enable cost-efficient and fast 
reading and writing of digital information using synthetic DNA. While sequencing by synthesis 
remains widely used for its low error rate and reliability, nanopore sequencing is being rapidly 
adopted in applications that require long DNA sequencing reads86, high degree of portability79, 
or real-time sequencing80. Given its portability and low-cost, a nanopore-based read-head for 
DNA storage has the potential to democratize this data storage technology outside of the research 
arena. Furthermore, recent advances in solid-state nanopore technology promise to further 
improve the cost and scale of nanopore sequencing.  
 
Methods 
 
Assembly sequence design.  Overhang sequence design was performed using a nucleic acid 
thermodynamic simulation software NUPACK v3.0.5. Secondary structure analysis was 
performed using 'pairs' function from NUPACK at 65°C with each overhang primer. Resulting 
secondary structure predictions are ranked by probability of self-pairing and primers with low 
secondary structure are selected. Next, we evaluated cross-talk among all possible pairs of 
overhang primers using 'pairs' function from NUPACK at 25°C, at 10nM of each overhang 
primer. Next, pairs with an equilibrium binding of 1nM or above were sequentially eliminated 
until finding a subset of primers with minimal cross-talk.  
 
PCR amplification. Each pool of synthetic DNA was rehydrated in 1X TE buffer. PCR based 
random access and overhang addition of a given file from a DNA pool was performed as 
following: mix 10 ng of ssDNA pool, 2 µM of forward and reverse primer, 25 µL of 2x Kapa 
HiFi enzyme mix, 1.25 µL of EvaGreen dye 20X and 20 µL of molecular grade water. All PCR 
reactions were carried out on a quantitative PCR instrument where amplification was stopped 
before the reaction reached a plateau phase. All primers were ordered from Integrated DNA 
Technologies. Assembly products were amplified using an equivalent protocol was diluted 10X.  
 
Gibson assembly. PCR reactions were cleaned-up using KAPA Pure beads for 1st assembly 
Gibson reactions. PCR reactions were gel-purified using a 1% agarose gel and NEB Monarch 
DNA Gel Extraction kit for 2nd assembly Gibson reactions to select out any side products from 
the 1st assembly. Gibson reactions were carried out using NEB Gibson Assembly Master Mix 
where the fragments were combined at 200 ng of DNA and incubated at 50°C for 1 hour.  
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OE-PCR. First, each individual fragment was amplified with the following PCR protocol. In a 
20 uL reaction, 1 uL of 10 nM single-stranded DNA pool was mixed with 1 uL of 10 uM of the 
forward primer and 1 uL of 10 uM of the reverse primer, 10 uL of 2X KAPA HIFI enzyme mix, 
1 uL of 20X EVA Green, and 6 uL of molecular biograde water. The reaction followed a thermal 
protocol: (1) 95˚C for 3 min, (2) 98˚C for 20 sec, (3) 62˚C for 20 sec, (4) 72˚C for 15 sec. The 
PCR reaction was performed on a quantitative PCR (qPCR) instrument and stopped before 
reaction reached a plateau phase. The length of amplified product was confirmed using a Qiaxcel 
fragment analyzer, and the sample concentration was measured by Qubit 3.0 fluorometer. 
 
Next, all amplified fragments were mixed with equal molar ratio (1.5 ng for each fragment) 
together with 10 uL of 2X KAPA HIFI enzyme mix in a total of 20 uL reaction. The reaction 
followed a standard PCR thermal protocol for N cycles (N is the total number of fragments). 
After that, 1 uL of the amplified product was mixed with 1 uL of 10 uM of the forward primer, 1 
uL of 10 uM of the reverse primer, 10 uL of 2X KAPA HIFI enzyme mix, and 7 uL of molecular 
biograde water. The mixture followed the same thermal protocol as above and stopped before 
reaching a plateau phase. The final product was verified using a Qiaxcel fragment analyzer. 
 
ONT MinION sequencing. Final assembly products were amplified in multiple PCR reactions 
to generate 1 µg of DNA after gel purification. Purification was carried out with a NEB Monarch 
DNA Gel Extraction kit, followed by column clean-up with Sigma-Aldrich Sephadex G-25 to 
remove excess salt. Finally, KAPA Pure beads were used to concentrate the final DNA library to 
45µL for nanopore sequencing. DNA purity and concentration were verified using Thermo 
Fisher Qubit and NanoDrop instruments. Sequencing sample preparation was carried using 1D2 
ligation kit LSK-308 and MinION flowcells R9.4. Each file assembly was sequenced in a 
separate flowcell and sequencing was carried out for 48 hours.  
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Figure 1 | Overview of the DNA data storage workflow. a, The encoding process starts with mapping multiple 
digital files into 150-nucleotide DNA sequences, which are sent for synthesis. Each file has unique sequence 
addresses at the 5' and 3' end of each oligonucleotide for random access retrieval. Using PCR primers containing 
complementary overhang sequences, a specific file can be amplified and concatenated into long double-stranded 
DNA molecules suited for ONT Nanopore sequencing. Upon sequencing, a subset of reads with high accuracy 
are used to decode the selected file. b, Sequence-until diagram. Nanopore sequencing enables real-time coverage 
estimation for decoding of digital files store in DNA. This enables the user to generate reads until coverage is 
enough for successful decoding. Upon decoding, a different file can be sequenced in the same flowcell or the 
sequencing run can be stopped and resumed later on. c, 4 different files encoded in DNA were amplified, 
assembled and sequenced using ONT MinION platform. We implemented two different assembly strategies: 
OE-PCR and Gibson assembly. d, Our assembly strategy enabled successful decoding of 1.67 MB of digital 
information stored in DNA using nanopore sequencing. In comparison with previous work with DNA storage 
and nanopore sequencing, this represents a 2-order of magnitude improvement in information decoded.  
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Figure 2 | Random access and sequential Gibson strategy for DNA storage. a, Our sequential Gibson 
assembly strategy starts enables random access of particular file from a pool of DNA oligonucleotides. First, the 
selected file is assembled into a 6-fragment assembly following by a second 4-fragment assembly. The resulting 
DNA product corresponds to a concatenation of 24 payloads of the selected file. b, First, a given file is PCR 
amplified using primers specific to the its address (AD1 & AD2) and containing overlapping overhang sequences 
(Xn). For a three-fragment assembly, three separate PCR amplification reactions are carried out each containing 
primer pairs with different overhangs based on a sequential assembly design (X1 & X2*, X2 & X3* and X3 & 
X4*). Upon amplification, products are purified and combined into a Gibson assembly reaction where the 
resulting assembled product is generated. c, Gel electrophoresis size distribution corresponding to a PCR 
amplification of a 6-fragment 1st Gibson assembly. Expected band size was 1,110 bp. d, Schematic 
representation of a two-fold assembly process. The product of the first assembly (m fragments) is amplified with 
distinct overhangs and the products are mixed in a Gibson assembly reaction (n fragments) to create a final 
assembly product (m x n fragments). e, Gel electrophoresis size distribution corresponding to a PCR 
amplification of a 24-fragment 2nd Gibson assembly. Expected band size was 4,590 bp. 
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Figure 3 | Nanopore sequencing analysis for 1.5 MB Apollo file. Two MinION flowcells generated 267,152 
1D2 reads of the 24-fragment Gibson assembly of the Apollo file. a, Base pair size of sequencing reads matches 
closely with the assembly size of 4,590 bp. b, We aligned each reference payload sequence to the sequencing 
reads. Each sequencing read resulting in an average of 17.99 alignments to different payloads. Ideally, each read 
should have 24 alignments. c, We found an average sequencing coverage of 43X per payload. d, We estimated 
raw sequencing quality by analyzing the average Phred quality score in each read. e, Based on the reads that 
aligned to payloads, we calculated the average percent error for each base for insertions, deletion and 
substitutions. f, Substitution comparison across different bases revealed strong bias in between purines and 
pyrimidines.  
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Figure 5 | Throughput comparison among sequencing runs with different DNA fragment sizes. a, We 
compared 5 runs of equivalent sequencing quality to understand how input DNA size affects sequencing 
throughput. We found a modest decrease in the number of 1D2 reads as the input DNA size increased. b, 
However, we found that the overall 1D2 yield in bases increased by a factor of 7-fold between a 600bp and 
4700bp input DNA size.  
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Supplementary figure 1 | Three pictures in JPEG format encoded in DNA and sequenced 
using ONT Nanopore sequencing.  
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Supplementary figure 2 | Cross-talk simulation for overhang sequences. a, We used a nucleic acid 
thermodynamic simulation software package to estimate bound equilibrium concentrations for every pair with 
a starting concentration of 10nM at 25°C. The diagonal line of white data points corresponds to binding 
between each sequence and its reverse complement. b, Then, we implemented an algorithm for sequentially 
removing overhang sequences with unintended binding. Threshold for unintended interaction was varied 
based on the number of final fragments necessary for assembly (threshold was set to 1nM for this example).  
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Supplementary figure 3 | Random access and OE-PCR strategy for DNA storage a, First, all the 
payloads associated with a particular file are split into multiple groups. Each group is given unique file 
IDs. To retrieve a particular file, each group is amplified with primers containing overhangs overlapping 
with each adjacent group. Subsequently, all the groups can be combined and amplified using primers 
corresponding to the end (e.g. ID-1 and ID-6) to form the assembly product using overlap-extension PCR. 
b, Bioanalyzer traces corresponding to the assembly of group 1-2-3 (lane 1), group 4-5-6 (lane 2), group 
7-8-9 (lane 3) and group 1 through 10 (lane 4). We found no observable by-products in the assembly of up 
to 10 groups demonstrating the scalability of this approach.  
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Supplementary figure 4 | Sequencing analysis for 113 kB Shuttle file. One MinION flowcells generated 
105,163 1D2 reads of the 24-fragment Gibson assembly a, Base pair size of sequencing reads matches closely 
with the assembly size of 4,590 bp. b, We aligned each reference payload sequence to the sequencing reads. 
Each sequencing read resulting in an average of 20.76 alignments to different payloads. Ideally, each read should 
have 24 alignments. c, We found an average sequencing coverage of 271x per payload. d, We estimated raw 
sequencing quality by analyzing the average Phred quality score in each read. e, Based on the reads that aligned 
to payloads, we calculated the average percent error for each base for insertions, deletion and substitutions  (f) 
Substitution comparison across different bases revealed strong bias in between purines and pyrimidines.  
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Supplementary figure 5 | Sequencing analysis for 32 kB Dishes file. One MinION flowcells generated 
274,206 1D2 reads of the 10-fragment OE-PCR assembly a, Base pair size of sequencing reads matches closely 
with the assembly size of 1,500 bp. b, We aligned each reference payload sequence to the sequencing reads. 
Each sequencing read resulting in an average of 7.05 alignments to different payloads. Ideally, each read should 
have 10 alignments. c, We found an average sequencing coverage of 737x per payload. d, We estimated raw 
sequencing quality by analyzing the average Phred quality score in each read. e, Based on the reads that aligned 
to payloads, we calculated the average percent error for each base for insertions, deletion and substitutions  (f) 
Substitution comparison across different bases revealed strong bias in between purines and pyrimidines.  
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Supplementary figure 6 | Sequencing analysis for 132 kB Vitruvian file. One MinION flowcells generated 
371,822 1D2 reads of the 6-fragment Gibson assembly a, Base pair size of sequencing reads matches closely 
with the assembly size of 1,110 bp. b, We aligned each reference payload sequence to the sequencing reads. 
Each sequencing read resulting in an average of 4.74 alignments to different payloads. Ideally, each read should 
have 6 alignments. c, We found an average sequencing coverage of 166x per payload. d, We estimated raw 
sequencing quality by analyzing the average Phred quality score in each read. e, Based on the reads that aligned 
to payloads, we calculated the average percent error for each base for insertions, deletion and substitutions  (f) 
Substitution comparison across different bases revealed strong bias in between purines and pyrimidines.  
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Conclusion 
 
In this body of work, we described the development of two independent platforms where we 
employed DNA nanotechnology as a foundational tool to solve important engineering 
challenges. In the past, DNA-based technologies, such as polymerase chain reaction or DNA 
sequencing, were fundamental for the advancement of human health and biological sciences. We 
expect that the work described here lays down the foundation for future avenues of growth in the 
field. Importantly, the applications described here are highly interdisciplinary. They required 
understanding of principles in disciplines as diverse as molecular biology, genomics, biophysics, 
chemistry, computer architecture and machine learning. It is important for researchers in the field 
to look beyond DNA nanotechnology into other disciplines where potential applications exist. 
We have only scratched the surface when it comes to the potential of DNA nanotechnology, and 
biological engineering at large, to transform existing technological paradigms and improve the 
human condition.  
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